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Different approximating expressions for the surface Laplacian operator on a triangulated 
surface are derived. They are evaluated on a triangulated spherical surface for which the 
analytical expression of the surface Laplacian is known. It is shown that in order to obtain 
accurate results, due care has to be taken of irregularities present in the triangulation grid. If 
this?s done, the approximation will equal the performance of an expression based on least 
squares which can be derived. Next the different approximations obtained are used as a 
regularization operator in the solution of an ill-posed inverse problem in electrical volume 
conduction. It is shown that in this application a crude approximation to the surface 
Laplacian suffices. e 1991 Academic Press, Inc. 

The Laplacian operator A is encountered in many fields of physics and applied 
mathematics. It turns up, e.g., in electrical volume conduction problems in physics 
and as a smoothing operator in many mathematical applications [ 11. 

In this paper we will focus on the surface Laplacian, i.e., the restriction of the 
operator to two-dimensional flat space or to a (curved) surface in three dimensions. 
Among many other applications, the surface Laplacian operator can be used for 
interpolation and extrapolation purposes [2, 31, and for some smoothing opera- 
tions, e.g., in picture processing [4]. It can also be used as a regularization 
operator in the solution of so-called ill-posed problems [5]. In this paper Laplacian 
should be interpreted as surface Laplacian. 

In most of the practical applications, where analytical solutions of the problems 
involving the Laplacian operator cannot be obtained, one has to resort to 
approximating numerical expressions. This paper will describe some approximating 
expressions for the Laplacian operator which can be used on a triangulated 3D 
surface. 

By way of introduction we will start by describing the well-known approximating 
expression for the Laplacian on a plane regular square grid. This expression leads 
to its generalization to a general plane regular grid. From this generalization, 
different expressions for the Laplacian will be derived on a general, triangulated 
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flat surface. Assuming a sufficiently dense triangulation grid the same expressions 
can be used on a 3D curved surface. A strictly numerical method applicable to a 
curved 3D triangulated surface will also be presented. 

The performance of these approximating expressions will be evaluated on 
a triangulated spherical surface on which some function, chosen more or less 
arbitrarily, is defined. In this situation, an analytical expression of the surface 
Laplacian can be derived which is used to validate the approximations. Next, 
the different approximations are tested in one practical application, i.e., as a 
regularization operator. 

THEORY 

The Plane Regular Square Grid 

For a planar, regular, square grid a simple difference formula for the Laplacian 
operator A can be derived. Consider (Fig. 1) pO in such a grid, situated at the 
origin, with = neighbours p L, . . . . p4 at a distance r. We will denotef, as the value 
off at p. and f, as the value at point pi. A Taylor expansion in the x coordinate 
yields 

or 

FIG. 1. A regular plane square grid 
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For the y coordinate one has 

A similar expression can be found for f3 and f4. Addition of these four expressions 
yields 

hence, writing Af, for Af IpO, 

i.e., 

Ah-+fd, (1) 

in which f is the average of fi, . . . . f4. Th is is the well-known first-order estimate of 
the Laplacian A on a regular square grid at p,, [6]. 

Other Regular Plane Grids 

Expression (1) can be generalized by taking the integral along a circle of radius 
r around p,, of the truncated Taylor expansion. Defining x = r cos(8) and y = 
r sin(O) we have 

I ,‘” (f(r, 0) -fO) dtJ N r j2* o cos(R)dflgi 
PO 

+r/2nsin(i))dBzi 
0 PO 

2n 
+ r2 

I 
aff 

c0s(e) sin(O) de - 
0 ax aY po 

+kr2 j in c0s2(e) de f$I 
PO 

+ i r2 j’” sin2(8) de $1 . 
0 PO 

Since the first three integrals on the right-hand side vanish and the remaining two 
give rr, we have 
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A.fo=($+$)I,, 

4 1 277 N-- 
r2 2n s U-k> 0) -fo) do 

0 

= f (J‘-.fo), (2) 

This generalization can be applied directly to plane regular grids (the regular 
hexagonal grid and the grid consisting of equilateral triangles). In general, for a 
single central point p0 in a plane surrounded by N neighbours at equal angles and 
at distance Y we can write down the expression 

= i WJJ”‘(fi -fo), 
r=, 

(3) 

with weights 

w,oL4 L I - r”N’ 

The Irregular Triangular Grid 

The evaluation of expression (2) for an irregular triangulation of the plane is not 
straightforward. In general, the grid points will not be distributed regularly with 
equal distances between neighbouring points and equal angles between neighbours 
(as is the case with the regular grids mentioned). This breaking of symmetry has to 
be accounted for. 

Regular Angles, Irregular Distances 

When the N neighbouring points p, are not regularly distributed around po, r in 
Eq. (3) could be replaced by ?, the mean distance to po. The approximation thus 
obtained, however, will in general be inaccurate, due to the breaking of symmetry. 

However, when only the distances from neighbours p, to p. differ and all angles 
are equal, symmetry can easily be restored by applying linear interpolation along 
the lines connecting p. to its neighbours. By replacing each neighbour pi at distance 
ri by a virtual neighbour 6, at distance F along the same direction and assigning a 
value ,Tj =fo + (!/ri)(f; -,fo) to that point approximation (3) becomes 
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(4) 

with 
4 1 1 ),$?C’)=-.-.-, I r N ri 

Irregular Angles, Irregular Distances 

The approximation (4), when used in the situation where the neighbouring points 
are not distributed at regular angles around pO, does not compensate for this 
breaking of symmetry. Therefore we return to Eq. (2) in which the mean value of 
falong a circle is involved. 

Consider the situation as depicted in Fig. 2, representing a general situation for 
a triangular planar grid. We assume a linear interpolation scheme in order to 
obtain a value for f at r’, with r’ in the triangle with sides ri and ri+ , : 

r’=;Ir, +pri+,, .f(r')=fo+U -fo~+~L(,L+l-fb), 

with A, p > 0. (The additional inequality I + p < 1 is required if r’ is in the triangle, 
but we allow r’ to cross the edge (ri+, - r;)). If we take r’ on a circle with radius 
r’, to be specified later, we can express % and p in terms of ri, r, + I, r’ and the angles 
!.x and di, 

and, thus, 

2 = y’ sin(di -a) 
r, sin(fji) ’ 

r’ sin(a) 
‘=E sin(4;)’ 

We can now perform the integration of Eq. (2), 

N 4% r’ sin(d, - a) = 
=j ( 

- 
i=, 0 r, sin(di) (‘-fo)+ri,,sin(4,) r' -(L+i -j+ 

=; [~.l~i~~~(l;)(/;-fo)+~.'~i~~~~~i),,_,-,,]. 
r=l I I !+I I 
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ri+l 

FIG. 2. An irregular plane triangular grid. 

Reordering terms and defining c#J,+ as the angle from ri to ri+ , and ~5,: as the angle 
from r, _ 1 to r,, rO being r, and rN + 1 being r , , we have 

This leads to the approximation (cf. Eq. (2)) 



SURFACE LAPLACIAN ESTIMATION 483 

We now choose r’ to be such that in the case of equal angles 4; the approximation 
reduces to expression (4): 

-@tot r’=r27[, with Qt,, = 

This finally leads to the approximation 

Ah-? 4"Ui -fd, 
i= 1 

(5) 

with 

w!2’-4 1 1 
I - 

1-(4;)+1--0+4+) 

r Qtot ’ ri ( sin($;) ) sin(f$+) 

The Formulation as a Least Squares Problem 

Consider the central point p,,, situated at the origin for convenience, with 
function valuef,, which is surrounded by N neighbours p, = (x,., yi) with value A.. 
For each p, we again look at the Taylor expansion off around pO: 

fi -fo+r$ 
I I 

+yjg +xiyis +Ix,azf +' ?Cf 
PO PO po 2 ’ ax2 p” 2 yl dy2 po’ 

By using the notation a, = a/ax, 8: = a2/ax2, . . . . etc. and Sf, =f, - fo, this expan- 
sion can be written as a matrix equation: 

or 

This matrix equation can be solved uniquely in a least squares sense, provided that 
the number of neighbours N is greater than or equal to five and that the matrix 
columns are independent. Even in the case of linear dependency a least squares 
solution having minimal norm may be computed as 

with D’ a pseudo inverse obtained through the singular value decomposition of the 
matrix D [7]. In this approach N may even be less than five. 
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From this expression an approximation to the Laplacian A may be formulated 
as 

(6) 

with 

Here DTi and D:, refer to the ith components of the first and second rows of the 
pseudo inverse Dt. This approach with planar Cartesian coordinates (x, y) can be 
adapted to one resulting in an expression in the local surface coordinates (5, q) on 
a curved surface in three dimensions. 

Better approximations can be obtained by assigning different weights (e.g., the 
inverse distance to the central point) to the different rows of the matrix equation 
given above. 

TEST PROCEDURES 

Evaluation on a Triangulated Spherical Surface 

In order to test the different approximations of Eqs. (3), (4), (5), and (6), to 
which we will refer as A(‘), A’]), A’*), and AC3’, respectively, triangulations were 
made of the surface of a sphere. The well-known expression for the surface 
Laplacian operator on a sphere, in spherical coordinates r, 8, and 4, is 

cos(8) a 
A=$$+--- 

1 a* 
r* sin(Q) ~30 + r* sin*(d) f@” 

As an analytical test function, a function of the form 

f(R 9) = : F(R; .fi(e, 4)) 
,=I 

was used. Here ri(0, 4) is a unit surface normal, Rj is a vector of arbitrary length 
and direction, and F is a real-valued function that is at least two times differen- 
tiable. M= 12 vectors R, with random direction and random length between 0 and 
1 were chosen, F was taken to be F(t) = sin(xt). 

Two distinct triangulations of the sphere were made: one in which the distribu- 
tion of points was as regular as possible and one which was highly irregular. Of this 
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FIG. 3. Frontal view of the 162-point regular triangulation of the sphere (left) and of the 162-point 
irregular triangulation (right). 

first regular triangulation three variants, consisting of 42, 162, and 642 points, 
respectively, were tested. For the irregular triangulation a version consisting of 
162 points and one of 642 points were chosen. Figure 3 shows a frontal view of the 
regular (left) and the irregular (right) triangulations of the sphere, both consisting 
of 162 points. 

The chosen function f and its analytical Laplacian (left- and right-hand side, 
respectively) are depicted, from the same perspective, in Fig. 4 as isofunction lines 
on the regular sphere, obtained through linear interpolation. Maximum and mini- 
mum value for f are 6.07 and - 6.07 and a stepsize of 0.5 was used. Negative values 
for f appear dashed. Maximum and minimum value for the analytical Laplacian of 
f on the sphere are 63.3 and -63.5 and a stepsize of 5.0 was chosen. 

For each of the triangulations, the approximations 4(O), . . . . .4’3’ to the surface 
Laplacian of the function f at each vertex were calculated and compared to the 
values for the analytical Laplacian. In approximation AC3’ local coordinates for the 
curved surface were used. As indicated earlier, expressions A”‘, A(‘), and Ac2) were 
applied without modifications, thus neglecting the curvature of the sphere. 

As a means of comparison, a relative rms and an absolute maximal difference 
measure on the triangulated surface X were defined as 

RELDIFF’ = 
sx (Af(x) - A”lf(~))~ dx ‘I2 

sx (AS(x))’ dx 1 
and 

MAXDIFF’ = ?+a; 1 Af (x) - A”)f(x)j. 
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Here .4 refers to the analytical Laplacian and A”’ to one of the approximations 
A(o) ) . ..) At3) The surface integrals involved were calculated by using an approxi- . 
mating surface area for each vertex. 

Evaluation as a Regularization Operator 

Let a triangulated 3D surface be described by N labelled point p, and let each 
point p, be surrounded by M, neighbours labelled nhk (i.e., nbi = j if pi is the kth 
neighbour of p,). With the expression for an approximation of the Laplacian 
operator at point pi of the form 

Af(p,) = : ~ikf(~n~~) -f(p,)), 
I=1 

a matrix L can be defined which when multiplied with the vector f, fi = f(pi), gives 
the vector A of values of the Laplacian at each point p,: 

L, = U’,k if i # j and pi is the kth neighbour of pi, 

=o if i #j and pi is not a neighbour of pi, 

=- 
w,k if i=j, 

k=l 

or 

L, = 2 6i,,h;w,k - 6, z U‘ik. 
k=l &=I 

(7) 

This matrix expression for A was used as a regularization operator in a solution 
method for the inverse problem of electrocardiography of the form [S]: 

Minimize E(t)= IAf(t)-vl’+E, ILT[~. (8) 

The vector r here describes the moment of electrical activation, expressed in 
milliseconds, of points on the (triangulated) surface of the heart; v is a vector con- 
taining the values of potentials measured on the torso surface; and the matrix A 
describes the volume conductor properties of the torso; 1.1 denotes the Euclidian 
norm. The inverse problem of electrocardiography belongs to the class of ill-condi- 
tioned problems, implying that small variations in measurement data (A and v) may 
cause large variations in the solution 2. The purpose of the Laplacian operator in 
this minimization problem is to keep solutions r bounded and smooth, in keeping 
with the physiological knowledge on the properties of the electrical activation 
process of the heart. 

With the accuracy of the triangulation of the heart surface having been chosen 
in accordance with the physiologically expected variation of z over that surface, the 
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different matrix expressions L’“‘, L”‘, L’*‘, and LC3’ relating to the approximations 
A@‘, A”‘, 4’2’, and 4’3’ were used as regularization operators. Their differences in 
performance were evaluated by comparing the difference between solutions tCi’ 
on the basis of measures similar to RELDIFF and MAXDIFF, as defined in the 
previous section: 

RELDIFF” = 
Jx (T(~)(X) - T”‘(X))* d,u I,‘* 

lx (z”‘)’ d-x 1 ’ 
MAXDIFF” = m:; I+‘(x) - z”‘(x)]. 

Additionally, the approximations A”‘, . . . . At3’ to the surface Laplacian of the 
solution tC3’ on the triangulated heart surface were compared mutually, using a 
RELDIFF” measure. 

RESULTS 

The Triangulated Sphere 

Results for the different approximations A(‘) (upper left), A”’ (upper right), A’*’ 
(3’ (lower right, and A ( lower left) are shown in Fig. 5 for the regular sphere 

(162 points) and in Fig. 6 for the irregular sphere (162 points). The viewpoint and 
the stepsize are as chosen in Fig. 4 for the analytical Laplacian. Figure 7 shows the 
the relined regular sphere, consisting of 642 points, and the approximation A”’ on 
it. The difference measures for both the original and the refined triangulations are 
summarized in Table I. 

TABLE I 

RELDIFF and MAXDIFF Values for Laplacian Approximations on Regularly and Irregularly 
Discretized Spheres 

Regular 
42 pnts. 

Regular 
162 pnts. 

Regular 
642 pnts. 

Irregular 
162 pnts. 

Irregular 
642 pnts. 

REL 0.302 
MAX 20.1 
REL 0.163 
MAX 13.5 
REL 0.292 
MAX 36.2 
REL 0.568 
MAX 59.0 
REL 1.050 
MAX 178.9 

A’l’ A”’ 

REL 0.305 
MAX 20.0 
REL 0.133 
MAX 10.1 
REL 0.197 
MAX 27.9 
REL 0.399 
MAX 30.7 
REL 0.728 
MAX 150.6 

REL 0.304 
MAX 20. I 
REL 0.095 
MAX 6.1 
REL 0.043 
MAX 4.1 
REL 0.201 
MAX 16.6 
REL 0.170 
MAX 22.7 

REL 0.303 
MAX 19.9 
REL 0.094 
MAX 6.0 
REL 0.027 
MAX 2.1 
REL 0.155 
MAX 11.2 
REL 0.059 
MAX 9.5 

A’?’ 
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FIG. 4. Isofunction lines of the chosen function ,f (left) and its analytical Laplacian A.f (right), 
plotted on the regulary triangulated surface of Fig. 3. Linear interpolation is used. The stepsize is 0.5 
for f and 5.0 for A.f (arbitrary units). Negative values appear dashed. 

FIG. 5. Isofunction lines of approximation A’“y (upper left), d”jf’(upper right), A’*!f (lower right), 
and d”!f (lower left) on the 162-point regular sphere. View and stepsize as in right-hand side of Fig. 4. 
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FIG. 6. Isofunction lines of approximations d”‘lf(upper left), d”!f(upper right), d’“jf(lower right), 
and Ac3!f (lower left) on the 162-point irregular sphere. View and stepsize as in Fig. 4. 

FIG. 7. 642-point, refined regular triangulation of the sphere (left) and isofunction lines of 
approximation d’“!fon it (right). View and stepsize as in Fig. 4. 

581195/2-16 
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FIG. 8. Isochrones of activation-functions r”l (left) and T(“’ (right) on the triangulated surface of 
the human heart. The stepsize is 5 ms. Upper part shows a frontal view of the outside of the heart 
(epicardium), lower part shows the inside in the same view (endocardium). 

The Regulurization Operator 

In Table II all relative and maximum differences between the solutions r(“, i = 0, 
3, are given. Figure 8 shows the solutions rc3) and r(O) obtained when using 
the approximations d’” and 4”’ as regularization operators. RELDIFF and 
MAXDIFF values between approximations A”), i = 0, 3, to the surface Laplacian of 
the function rc3) are given in Table III. 

DISCUSSION 

Comparison between the results obtained with the approximations A”‘, . . . . Ac3) 
for the regular, unrefined sphere, as shown in Fig. 5, and the analytical Laplacian 
of Fig. 4 show only small differences on the basis of visual inspection. Evaluation 
of the measures (Table I), however, shows that the performance of the approxima- 
tions A”’ and A”’ is worse than that of 4”) and Ac3), in terms of both relative and 
absolute differences. 

Although the differences are not dramatic, small variations in the angles of the 
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triangular tiles cause poorer performance in the approximations in which these 
irregularities are not considered. 

This effect is, surprisingly, amplified when the refined triangulation of the sphere 
is used. Although an improvement of the approximation can be expected when 
more points are chosen on the sphere, the effect of disregarding irregular angles 
worsens the approximations 4”’ and A”‘, whereas by taking them into account the 
approximations A(*) and At3’ are improved (see Appendix). 

The use of a manifestly irregular triangulation of the sphere results in very bad 
approximations A”’ and A(‘) both with respect to the different values and on the 
basis of visual inspection (Fig. 6). Refinement of the triangulation again worsens 
matters for 4”’ and A”‘. 

Approximation Ac3’ performs best in all cases presented, and when compared to 
A’2’, the difference in performance is largest in the case of the irregular refined 
sphere. This improved performance cannot be explained by the fact that in A”’ the 
curvature of the surface is taken into account, since a refinement of the triangula- 
tion implies a more flat neighbourhood for each point, thus decreasing the effect of 
disregarding the curvature. The explanation lies in the fact that in A”’ a least 
squares approximation to the Taylor expansion is used, thus explicitly minimizing 
the difference between the analytical and the approximated Laplacian. Smaller 
differences in performance between A”’ and Ac3’ for the spheres having fewer 
discretization points can be explained by the growing dominance of the error 
resulting from taking a sampling grid which is too sparse, given the function defined 
on the sphere. 

Summarizing, it is shown that the irregularities in the triangulations must be 
incorporated into an approximating expression for the Laplacian operator. Only 
when the discretization is chosen such that “undersampling” occurs is the perfor- 
mance of all approximations roughly the same. It is also shown that approximation 
Ac3) performs best. However, when the number of discretization points is large 
enough to reflect the variation of the function chosen (cf. Fig. 4), approximation 

TABLE II 

RELDIFF” and MAXDIFF” Values for Pairs of Solutions T(“, 7I’) Related to the Use of d”“, .,,, d”’ 
as Regularization Operator 

Reference 
p 

Reference 
T(Il 

Reference 
@I 

Reference 
p1 

REL 
MAX 
REL 
MAX 
REL 
MAX 
REL 
MAX 

REL 
MAX 

0.025 REL 
4.9 I MAX 
0.045 REL 
9.96 MAX 
0.054 REL 

11.4 MAX 

0.024 REL 
4.91 MAX 

REL 
MAX 

0.035 REL 
8.12 MAX 
0.055 REL 

11.0 MAX 

0.045 REL 0.054 
9.96 MAX 11.4 
0.035 REL 0.055 
8.12 MAX 11.0 
- REL 0.046 
- MAX 10.9 

0.046 REL 
IO.9 MAX 



492 GEERTJAN HUISKAMP 

TABLE III 

Mutual RELDIFF Values for Different Approximations A , (‘I A”’ to the Laplacian of the Function T(~’ 
on the Heart Surface 

4’0’ A”’ A’21 A’)’ 

A’01 REL REL 0.19 REL 0.46 REL 0.65 
A”) REL 0.20 REL REL 0.37 REL 0.63 
A”’ REL 0.45 REL 0.35 REL REL 0.52 
A’l’ REL 0.54 REL 0.50 REL 0.44 REL 

A”’ is still a good choice. It has the advantage of greater conceptual simplicity 
because it can be expressed directly in terms of the angles and distances between 
points and their neighbours, whereas AC3) requires, for each point of the triangula- 
tion, the solution of a least squares system. 

When applying each of the approximations A”‘, . . . . At3’ as a regularization 
operator in the ill-conditioned problem presented here, variations in the solutions 
appear to be within the limits imposed by the sensitivity of the problem to 
modelling and measurement noise [9]. 

Tables II and III show that in the regularization of ill-conditioned problems, 
such as the one presented here, a relatively crude approximation to the Laplacian 
operator will suffice. While the differences in the inverse solutions obtained are at 
most 5.5%, the differences between the approximations to the Laplacian are much 
bigger, indicating that at most only one of the approximations is not “crude.” 

In the scattered data fitting literature more elaborate schemes exist, which will 
give better approximations to the function to be interpolated and its partial 
(second-order) derivatives [ 10, 111. Such methods may consider more points than 
the restricted number of neighbours implied by the triangulation used here; i.e., 
more global information of the function is used. We feel, however, that in the 
application given here, confined to the framework of the triangulation, the method 
presented provides a straightforward and fast algorithm for obtaining an 
approximation to the surface Laplacian on a triangulated surface. 

APPENDIX 

In this appendix the poorer performance of the crude approximations 4”’ and 
A”‘, which occurs when the triangular grid is refined, is discussed. 

Suppose there exists an accurate approximation A for the Laplacian operator on 
a planar surface which can be expressed as (cf. Eq. (5)) 
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where the weights qi depend only on the interior angles of the triangular tiles, and 
a second, less accurate, approximation with erroneous weights (qi + E;) (cf. Eq. (4)) 

(“fi -fo) &)=“E (q,+b-+- 
7 ; I 

with 

For each i we can write the Taylor expansion off about p,, in the direction of ri 
( = Pi -Pd 

The Taylor expansion is truncated at the second-order derivative, since in the 
derivation of the approximating expression to the Laplacian, higher order terms 
were neglected in the first place. Therefore if r and Y; are chosen big with respect 
to the variations of f the error of the approximation will grow, regardless of 
(a)symmetry of the angles. 

When, on the other hand, the truncation of the Taylor expansion is justified, a 
refinement of the triangular mesh (cf. Fig. 3 and Fig. 6) implies j, ri + 0 while all 
other terms remain the same, which means that Z, i.e., the error in the approxima- 
tion d” due to erroneous weight factors )+fi, will grow (provided that the norm of the 
gradient at pO, relating to df/i?i, IP,,, is greater than 0). 

The effect is demonstrated in Table A and in Fig. Al and A2. Here the 
approximation d(l) on a (finite) regular hexagonal plane grid is treated. A slightly 
distorted version of this grid, where for each point the weight factors w’, differ only 
about 1% from the mean value b, is also available. For both of these (61 point-) 
grids, two successive refinements are made, consisting of 217 and 8 17 points, 
respectively. As a test function a function similar to the one used previously is 
chosen. Because in points on the rim the calculation of the approximation to the 
Laplacian cannot be performed, for these points values of d and A(‘) have been 
determined by iteratively averaging the values of neighbouring points. 

Figure Al shows the test function in a grey scale representation (left upper 
panel). The maximum value is depicted black, the minimum value white, withf= 0 
at the middle grey level. The upper right panel shows the analytical Laplacian of 
f, again with maximum value black and zero at the middle grey level. The lower left 
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FIG. Al. (a) Grey scale representation of the chosen function ,f (upper left) on the hexagonal grid; 
black represents the maximum value, ,f=O at the middle grey level. (b) Analytical LIJ (upper right), 
maximum value black, zero at middle grey level. (c) 1V.f) (I ower left), scaled between its maximum and 
minimum value. (d) Triangular grid and standard deviation of the angular weight factors for the 
distorted grid (lower right); grey scale for standard deviation goes from minimum to maximum value 
occurring. 

panel shows the norm of the (analytical) gradient vector off, scaled between its 
maximum and minimum value. Finally, the lower right panel shows the triangles 
composing the distorted grid and the standard deviation of the angular weight 
factors, scaled between the maximum and minimum values occurring. Notice that 
the deviation from the regular hexagonal grid is too small to be visible in the plot 
of the triangles. 

The performance of approximation d(l) on the various hexagonal grids is 
summarized in Table A. The left column shows the decrease of RELDIFF and 
MAXDIFF when the regular grid is refined, while the right column shows the 
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FIG. A2. (d”!f-AdfJ for different hexagonal grids. Each plot is scaled to the maximum and mini- 
mum values occurring in it. Left column, from top to bottom: 61-, 217-, and 817-point regular hexagonal 
grid. Right column: 61-, 217-, and 817-point distorted grid. 
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TABLE A 

RELDIFF and MAXDIFF Values for 

Approximation d”’ on the Various 

Hexagonal Grids 

Points Regular Distorted 

61 REL 0.068 REL 0.067 
MAX 17.3 MAX 16.3 

217 REL 0.019 REL 0.027 

MAX 4.90 MAX 8.30 

817 REL 0.008 REL 0.035 

MAX 2.20 MAX 17.3 

initial decrease and subsequent increase of the difference measures in the case of the 
refinement of the distorted hexagonal grid. 

Figure A2 shows the absolute value of the differences between the analytical 
Laplacian and the approximation d (‘I for the grids. The different panels correspond 
to Table A: the left column represents the regular grid, the right column the distor- 
ted one. Each plot is scaled to the maximum and minimum values occurring in it. 
The left column shows that for the regular hexagonal grid the error made in the 61- 
and 217-point cases is related to variations in f itself (compare IVjJ, Fig. Al, left 
lower panel). When a further refinement is made, the error becomes dominated by 
numerical inaccuracies. The right column shows that in the case of the distorted 
grid initially the error made is of the same magnitude and nature as in the case of 
the regular grid (right upper panel). However, as the grid is relined, the error 
caused by the irregularities becomes more important (compare Fig. Al, lower right 
panel), although the total error is still decreasing. A further refinement causes an 
increase of the total error, which is now dominated by the irregularities of the grid. 
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